Showing posts with label study. Show all posts
Showing posts with label study. Show all posts

Saturday, October 11, 2014

Nice sciencedaily article from earlier this year

Monkey caloric restriction study shows big benefit; contradicts earlier study

...The study of 76 rhesus monkeys, reported Monday in Nature Communications, was performed at the Wisconsin National Primate Research Center in Madison. When they were 7 to 14 years of age, the monkeys began eating a diet reduced in calories by 30 percent. The comparison monkeys, which ate as much as they wanted, had an increased risk of disease 2.9 times that of the calorie-restricted group, and a threefold increased risk of death.
"We think our study is important because it means the biology we have seen in lower organisms is germane to primates," says Richard Weindruch, a professor of medicine at the School of Medicine and Public Health, and one of the founders of the UW study. "We continue to believe that mechanisms that combat aging in caloric restriction will offer a lead into drugs or other treatments to slow the onset of disease and death."...
 Weindruch also points to some results from the NIA that seem to contradict the "no significant result" analysis. Twenty monkeys entered the NIA study as mature adults, 10 in the test group and 10 in the control group, and five of these (four test monkeys and one control monkey) lived at least 40 years. "Heretofore, there was never a monkey that we are aware of that was reported to live beyond 40 years," Weindruch says. "Hence, the conclusion that caloric restriction is ineffective in their study does not make sense to me and my colleagues."...-link
 Calorie restriction seems to be showing noticeable benefits on primates.

 

Thursday, January 2, 2014

Idebenone and Resveratrol Extend Lifespan and Improve Motor Function of HtrA2 Knockout Mice


Heterozygous loss-of-function mutation of the human gene for the mitochondrial protease HtrA2 has been associated with increased risk to develop mitochondrial dysfunction, a process known to contribute to neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). Knockout of HtrA2 in mice also leads to mitochondrial dysfunction and to phenotypes that resemble those found in neurodegenerative disorders and, ultimately, lead to death of animals around postnatal day 30. Here, we show that Idebenone, a synthetic antioxidant of the coenzyme Q family, and Resveratrol, a bioactive compound extracted from grapes, are both able to ameliorate this phenotype. Feeding HtrA2 knockout mice with either compound extends lifespan and delays worsening of the motor phenotype.-link

In addition to extending the lifespan of obese mice, mice with alzheimer's like pathology and accelerated senescence mice, now with this study we see that in mice with genetic abnormality in the mitochondria lifespan's also extended.